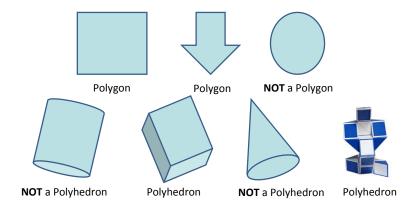
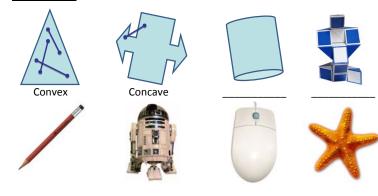
Platonic Solids

Igor Raush Irina Kufareva


SDMC Fermat Nov 8, 2008

A Lesson of Greek (cont.)

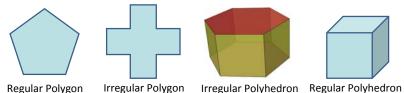
deca-
eca-
eca-
adeca-
tadeca-
<u>sa-</u>
<u>to-</u>
<u>-</u>
<u>ia-</u>


A Lesson of Greek

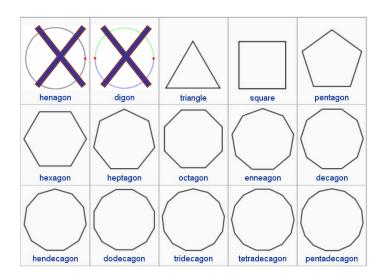
- **Poly**: Greek πολύς (polus) = "many"
- **Gon**: Greek γωνία (gōnia) = "angle"
- **Hedron**: Greek $\xi\delta\rho\alpha$ (hedra) = "face"

...and a Lesson of Latin

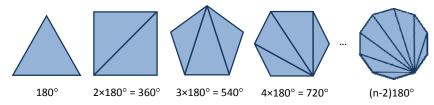
- Convex: Latin convexus = "arched"
 - A figure or a solid is <u>convex</u> if <u>any</u> segment whose endpoints are inside the figure/solid lies <u>entirely</u> in the figure/solid
- Concave = non-convex



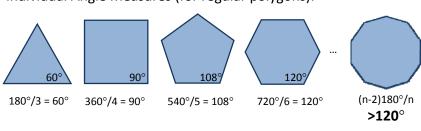
...a Lesson of Latin (cont.)


• Congruent: Latin congruere = "to meet together", "agree"

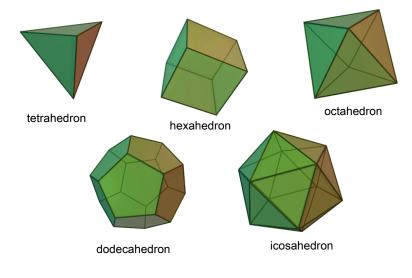
- Regular: Latin regula = "rule"
 - Polygons: congruent angles + congruent sides
 - Polyhedra: congruent regular faces + equal number of faces meet at each vertex



Convex) Regular Polygons



Angle measures of convex polygons


Sum of angle measures:

Individual Angle Measures (for regular polygons):

Convex Regular Polyhedra, a.k.a. Platonic Solids

